
INTRODUCTION

1. Encapsulation by Subprogram

2. Generic Subprogram

ENCAPSULATION BY SUBPROGRAM

A subprogram is a n abstract operation defined by the
programmer. A subprogram have to views:

•Program Design Level

•Language Design Level

At a program level subprogram represents a an
abstract operation that programmer define rather than
primitive operation that are built in to language

Subprogram as an Abstract Operation:

A subprogram definition has two parts:

•Specification

•Implementation

Specification of a program

6/25/2015

2

ENCAPSULATION BY SUBPROGRAM

Specification of a program:

It includes:

1. The name of the subprogram

2. Signature(also known as proto type) giving the number
of arguments ,their order, data type of each as well as
number of result their order, and data type of each

3. The action performed by the subprogram

An example of a syntax:

 float FN(float X, int Y)

That specifies the signature as:

 FN: real * integer -- real

6/25/2015

3

SUBPROGRAM IMPLEMENTATION
 A subprogram is implemented using the data

structure and operations provided by the
programming language. The implementation
is defined by the subprogram body , thst
consists of local data declaration defining the
data structure used by sub program and
statements defining the actions to be taken
when subprogram is executed. The

declaration and statements are usually
encapsulated so that neither the local data
nor statements are accessible to user of the
subprogram: The user may only invoke the

subprogram with a particular set of arguments

And receives the output results

6/25/2015

4

SUBPROGRAM IMPLEMENTATION
 The syntax of a subprogram

• Signature of a subprogram

• Declaration of local data objects

• Sequence of statements defining the action of

a subprogram

Each invocation of a subprogram requires the

arguments of the proper types

Type checking may be same as in data types

• Static Type Checking

• Dynamic Type Checking

6/25/2015

5

SUBPROGRAM DEFINITION & INVOCATION
 During the execution of a program if a

subprogram is called(invoked) an activation

Of a subprogram is created. When a execution

of subprogram is complete the activation is

destroyed. If another call is made , a new

activation is created .From a single

subprogram it is possible to many activation

may be created during program execution..A

definition is information that present at the

time of translation. An activation has a life

time-the time during execution between call

that creates it and returns that destroys it.

6/25/2015

6

SUBPROGRAM DEFINITION & INVOCATION
 To construct a particular activation of a

subprogram it is required to split in to parts:

A static part :

Also known as code segment made with the help

of constant and executable code. It should be

invariant during execution of a subprogram

and so a single copy may be shared by all act

ovation

A dynamic Part

Known as activation record made with the help of

parameter, function results and local data some

other point like temporary storage areas , return

point .

The size and structure of activation record for a

subprogram can be find out at translation time

6/25/2015

7

GENERIC SUBPROGRAM
The specification of subprogram lists the

number, order and data types of arguments. A

generic subprogram is one with a single name

but several different definitions defined be

different signature.

A generic subprogram is said to be overloaded

6/25/2015

8

Code segment

for FN

Activation

Record for FN

Activation

Record for

FN

Activation

Record for FN

Shared Code and Separate Activation Records

TYPE DEFINITION

6/25/2015

9

Some language provides a flexibility that user can

define their own data type. This mechanism is

termed as Type Definition

Like in Pascal

type Rational =Record

 numerator :integer;

 denominator: integer;

 end

 var A,B,C: Rational;

Syntax is :

Typedef definition name

 typedef structRationalType

 {int numerator;

 int denominator;} Rational

 Rational A,B,C; in C langauge

